Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cell Res. 2008 Jan;18(1):174-83.

DNA polymerase zeta (pol zeta) in higher eukaryotes.

Author information

  • 1Department of Pharmacology, University of Pittsburgh Medical School, Pittsburgh, PA 15213, USA.

Abstract

Most current knowledge about DNA polymerase zeta (pol zeta) comes from studies of the enzyme in the budding yeast Saccharomyces cerevisiae, where pol zeta consists of a complex of the catalytic subunit Rev3 with Rev7, which associates with Rev1. Most spontaneous and induced mutagenesis in yeast is dependent on these gene products, and yeast pol zeta can mediate translesion DNA synthesis past some adducts in DNA templates. Study of the homologous gene products in higher eukaryotes is in a relatively early stage, but additional functions for the eukaryotic proteins are already apparent. Suppression of vertebrate REV3L function not only reduces induced point mutagenesis but also causes larger-scale genome instability by raising the frequency of spontaneous chromosome translocations. Disruption of Rev3L function is tolerated in Drosophila, Arabidopsis, and in vertebrate cell lines under some conditions, but is incompatible with mouse embryonic development. Functions for REV3L and REV7(MAD2B) in higher eukaryotes have been suggested not only in translesion DNA synthesis but also in some forms of homologous recombination, repair of interstrand DNA crosslinks, somatic hypermutation of immunoglobulin genes and cell-cycle control. This review discusses recent developments in these areas.

PMID:
18157155
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk