Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Plant Cell. 2007 Dec;19(12):4111-9. Epub 2007 Dec 21.

An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28.

Author information

  • 1Plant Sciences Institute, Iowa State University, Ames, Iowa 50011, USA.

Abstract

Stresses leading to the accumulation of misfolded proteins in the endoplasmic reticulum (ER) elicit a highly conserved ER stress response in plants called the unfolded protein response (UPR). While the response itself is well documented in plants, the components of the signaling pathway are less well known. We have identified three membrane-associated basic domain/leucine zipper (bZIP) factors in Arabidopsis thaliana that are candidates for ER stress sensors/transducers. One of these factors, bZIP28, an ER-resident transcription factor, is activated in response to treatment by tunicamycin (TM), an agent that blocks N-linked protein glycosylation. Following TM treatment, bZIP28 is processed, releasing its N-terminal, cytoplasm-facing domain, which is translocated to the nucleus. Expression of a truncated form of bZIP28, containing only the cytoplasmic domain of the protein, upregulated the expression of ER stress response genes in the absence of stress conditions. Thus, bZIP28 serves as a sensor/transducer in Arabidopsis to mediate ER stress responses related to UPR.

PMID:
18156219
[PubMed - indexed for MEDLINE]
PMCID:
PMC2217655
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk