Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
RNA. 2008 Feb;14(2):211-6. Epub 2007 Dec 19.

A-to-I editing sites are a genomically encoded G: implications for the evolutionary significance and identification of novel editing sites.

Abstract

Ribonucleic acid (RNA) editing can extend transcriptomic and proteomic diversity by changing the identity of a particular codon. Genetic recoding as a result of adenosine-to-inosine (A-to-I) RNA editing can alter highly conserved or invariant coding positions in proteins. Interestingly, examples exist in which A-to-I editing sites in one species are fixed genomically as a G in a closely related species. Phylogenetic analysis indicates that G-to-A mutations at the DNA level may be corrected by post-transcriptional A-to-I RNA editing, while in turn, the edited I (G) may be hardwired into the genome, resulting in an A-to-G mutation. We propose a model in which nuclear A-to-I RNA editing acts as an evolutionary intermediate of genetic variation. We not only provide information on the mechanism behind the evolutionary acquisition of an A-to-I RNA editing site but also demonstrate how to predict nuclear A-to-I editing sites by identifying positions where an RNA editing event would maintain the conservation of a protein relative to its homologs in other species. We identified a novel edited site in the fourth exon of the cacophony transcript coding calcium channel alpha1 and verified it experimentally.

PMID:
18094120
[PubMed - indexed for MEDLINE]
PMCID:
PMC2212257
Free PMC Article

Images from this publication.See all images (4)Free text

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk