Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20427-31. Epub 2007 Dec 11.

The genetic basis of a plant-insect coevolutionary key innovation.

Author information

  • 1Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans Knoell Strasse 8, 07745 Jena, Germany. cww10@psu.edu

Abstract

Ehrlich and Raven formally introduced the concept of stepwise coevolution using butterfly and angiosperm interactions in an attempt to account for the impressive biological diversity of these groups. However, many biologists currently envision butterflies evolving 50 to 30 million years (Myr) after the major angiosperm radiation and thus reject coevolutionary origins of butterfly biodiversity. The unresolved central tenet of Ehrlich and Raven's theory is that evolution of plant chemical defenses is followed closely by biochemical adaptation in insect herbivores, and that newly evolved detoxification mechanisms result in adaptive radiation of herbivore lineages. Using one of their original butterfly-host plant systems, the Pieridae, we identify a pierid glucosinolate detoxification mechanism, nitrile-specifier protein (NSP), as a key innovation. Larval NSP activity matches the distribution of glucosinolate in their host plants. Moreover, by using five different temporal estimates, NSP seems to have evolved shortly after the evolution of the host plant group (Brassicales) ( approximately 10 Myr). An adaptive radiation of these glucosinolate-feeding Pierinae followed, resulting in significantly elevated species numbers compared with related clades. Mechanistic understanding in its proper historical context documents more ancient and dynamic plant-insect interactions than previously envisioned. Moreover, these mechanistic insights provide the tools for detailed molecular studies of coevolution from both the plant and insect perspectives.

PMID:
18077380
[PubMed - indexed for MEDLINE]
PMCID:
PMC2154447
Free PMC Article

Images from this publication.See all images (2)Free text

Fig. 1.
Fig. 2.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk