Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2008 Jan 8;47(1):308-19. Epub 2007 Dec 13.

Structures and micelle locations of the nonlipidated and lipidated C-terminal membrane anchor of 2',3'-cyclic nucleotide-3'-phosphodiesterase.

Author information

  • 1Department of Pharmaceutical Sciences, University of Salerno, I-84084 Fisciano, Italy.

Abstract

2,3'-Cyclic nucleotide-3'-phosphodiesterase (CNP) is a myelin-associated protein, an enzyme abundantly present in the central nervous system of mammals and some vertebrates. In vitro, CNP specifically catalyzes the hydrolysis of 2',3'-cyclic nucleotides to produce 2'-nucleotides, but the physiologically relevant in vivo substrate is still unknown. Recently, it was found that CNP is a possible linker protein between microtubules and the plasma membranes. Since CNP is modified post-translationally by an isoprenylation process at its C terminus, the prenylation is hypothesized to be a requisite process, which permanently anchors CNP to the plasma membrane. This study investigates the molecular mechanism of the interaction between CNP and the plasma membrane, proposing a general model to interpret the structural bases of prenylated proteins binding to the membrane. A 13 residue, C-terminal CNP fragment, C13, was demonstrated to be directly responsible for CNP membrane anchoring. C13 and its lipidated derivative (LIPO-C13) were subjected to conformational analysis in membrane mimetic environments, by means of CD and NMR spectroscopies. The orientation of C13 in relation to the membrane was investigated by NMR and EPR spin labeling studies. Our structural investigation shows that the presence of the lipidic tail is essential for the peptide to be folded and correctly positioned on the membrane surface. A general model is proposed in which the post-translational lipidation is an important biomolecular trick to enlarge the hydrophobic surface and to enable the contact of the protein with membrane.

PMID:
18076147
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk