Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Cell Biol. 2007 Dec 3;179(5):1027-42.

Dual roles of myocardin-related transcription factors in epithelial mesenchymal transition via slug induction and actin remodeling.

Author information

  • 1Department of Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.

Abstract

Epithelial-mesenchymal transition (EMT) is a critical process occurring during embryonic development and in fibrosis and tumor progression. Dissociation of cell-cell contacts and remodeling of the actin cytoskeleton are major events of the EMT. Here, we show that myocardin-related transcription factors (MRTFs; also known as MAL and MKL) are critical mediators of transforming growth factor beta (TGF-beta) 1-induced EMT. In all epithelial cell lines examined here, TGF-beta1 triggers the nuclear translocation of MRTFs. Ectopic expression of constitutive-active MRTF-A induces EMT, whereas dominant-negative MRTF-A or knockdown of MRTF-A and -B prevents the TGF-beta1-induced EMT. MRTFs form complexes with Smad3. Via Smad3, the MRTF-Smad3 complexes bind to a newly identified cis-element GCCG-like motif in the promoter region of Canis familiaris and the human slug gene, which activates slug transcription and thereby dissociation of cell-cell contacts. MRTFs also increase the expression levels of actin cytoskeletal proteins via serum response factor, thereby triggering reorganization of the actin cytoskeleton. Thus, MRTFs are important mediators of TGF-beta1-induced EMT.

PMID:
18056415
[PubMed - indexed for MEDLINE]
PMCID:
PMC2099179
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk