Display Settings:

Format

Send to:

Choose Destination
Stroke. 2008 Jan;39(1):205-12. Epub 2007 Nov 29.

Experimental model of lacunar infarction in the gyrencephalic brain of the miniature pig: neurological assessment and histological, immunohistochemical, and physiological evaluation of dynamic corticospinal tract deformation.

Author information

  • 1Department of Neurosurgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.

Abstract

BACKGROUND AND PURPOSE:

Lacunar infarction accounts for 25% of ischemic strokes, but the pathological characteristics have not been investigated systematically. A new experimental model of lacunar infarction in the miniature pig was developed to investigate the pathophysiological changes in the corticospinal tract from the acute to chronic phases.

METHODS:

Thirty-five miniature pigs underwent transcranial surgery for permanent anterior choroidal artery occlusion. Animals recovered for 24 hours (n=7), 2 (n=5), 3 (n=2), 4 (n=2), 6 (n=1), 7 (n=7), 8 (n=2), and 9 days (n=1), 2 weeks (n=2), 4 weeks (n=3), and more than 4 weeks (n=3). Neurology, electrophysiology, histology, and MRI were performed. Seven additional miniature pigs underwent transient anterior choroidal artery occlusion to study muscle motor-evoked potentials and evaluate corticospinal tract function during transient anterior choroidal artery occlusion.

RESULTS:

The protocol had a 91.4% success rate in induction of internal capsule infarction 286+/-153 mm(3) (mean+/-SD). Motor-evoked potentials revealed the presence of penumbral tissue in the internal capsule after 6 to 15 minutes anterior choroidal artery occlusion. Total neurological deficit scores of 15.0 (95% CI, 13.5 to 16.4) and 3.4 (0.3 to 6.4) were recorded for permanent anterior choroidal artery occlusion and sham groups, respectively (P<0.001, maximum score 25) with motor deficit scores of 3.4 (95% CI, 2.9 to 4.0) and 0.0 (CI, 0.0 to 0.0), respectively (P<0.001, maximum score 9). Histology revealed that the internal capsule lesion expands gradually from acute to chronic phases.

CONCLUSIONS:

This new model of lacunar infarction induces a reproducible infarct in subcortical white matter with a measurable functional deficit and evidence of penumbral tissue acutely.

PMID:
18048856
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk