Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19273-8. Epub 2007 Nov 28.

The all-trans-retinal dimer series of lipofuscin pigments in retinal pigment epithelial cells in a recessive Stargardt disease model.

Author information

  • 1Department of Ophthalmology, Columbia University, New York, NY 10032, USA.

Abstract

The bis-retinoid pigments that accumulate in retinal pigment epithelial cells as lipofuscin are associated with inherited and age-related retinal disease. In addition to A2E and related cis isomers, we previously showed that condensation of two molecules of all-trans-retinal leads to the formation of a protonated Schiff base conjugate, all-trans-retinal dimer-phosphatidylethanolamine. Here we report the characterization of the related pigments, all-trans-retinal dimer-ethanolamine and unconjugated all-trans-retinal dimer, in human and mouse retinal pigment epithelium. In eyecups of Abcr(-/-) mice, a model of recessive Stargardt macular degeneration, all-trans-retinal dimer-phosphatidylethanolamine was increased relative to wild type and was more abundant than A2E. Total pigment of the all-trans-retinal dimer series (sum of all-trans-retinal dimer-phosphatidylethanolamine, all-trans-retinal dimer-ethanolamine, and all-trans-retinal dimer) increased with age in Abcr(-/-) mice and was modulated by amino acid variants in Rpe65. In in vitro assays, enzyme-mediated hydrolysis of all-trans-retinal dimer-phosphatidylethanolamine generated all-trans-retinal dimer-ethanolamine, and protonation/deprotonation of the Schiff base nitrogen of all-trans-retinal dimer-ethanolamine was pH-dependent. Unconjugated all-trans-retinal dimer was a more efficient generator of singlet oxygen than A2E, and the all-trans-retinal dimer series was more reactive with singlet oxygen than was A2E. By analyzing chromatographic properties and UV-visible spectra together with mass spectrometry, mono- and bis-oxygenated all-trans-retinal dimer photoproducts were detected in Abcr(-/-) mice. The latter findings are significant to an understanding of the adverse effects of retinal pigment epithelial cell lipofuscin.

PMID:
18048333
[PubMed - indexed for MEDLINE]
PMCID:
PMC2148280
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk