Send to

Choose Destination
See comment in PubMed Commons below

Predicting altered pathways using extendable scaffolds.

Author information

  • 1Department of Biostatistics and Applied Mathematics, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.


Many diseases, especially solid tumors, involve the disruption or deregulation of cellular processes. Most current work using gene expression and other high-throughput data, simply list a set of differentially expressed genes. We propose a new method, PAPES (predicting altered pathways using extendable scaffolds), to computationally reverse-engineer models of biological systems. We use sets of genes that occur in a known biological pathway to construct component process models. We then compose these models to build larger scale networks that capture interactions among pathways. We show that we can learn process modifications in two coupled metabolic pathways in prostate cancer cells.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Write to the Help Desk