Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2008 Jan 25;283(4):2088-97. Epub 2007 Nov 15.

Role of beta-arrestin-mediated desensitization and signaling in the control of angiotensin AT1a receptor-stimulated transcription.

Author information

  • 1Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA.

Abstract

Heptahelical G protein-coupled receptors employ several mechanisms to activate the ERK1/2 cascade and control gene transcription. Previous work with the angiotensin AT1a receptor has shown that G(q/11) activation leads to a rapid and transient rise in ERK1/2 activity, whereas beta-arrestin binding supports sustained ERK1/2 activation by scaffolding a Raf.MEK.ERK complex associated with the internalized receptor. In this study, we compared the role of the two beta-arrestin isoforms in AT1a receptor desensitization, ERK1/2 activation and transcription using selective RNA interference. In HEK293 cells, both the native AT1a receptor and a G protein-coupling deficient DRY/AAY mutant recruited beta-arrestin1 and beta-arrestin2 upon angiotensin binding and internalized with the receptor. In contrast, only beta-arrestin2 supported protein kinase C-independent ERK1/2 activation by both the AT1a and DRY/AAY receptors. Using focused gene expression filter arrays to screen for endogenous transcriptional responses, we found that silencing beta-arrestin1 or beta-arrestin2 individually did not alter the response pattern but that silencing both caused a marked increase in the number of transcripts that were significantly up-regulated in response to AT1a receptor activation. The DRY/AAY receptor failed to elicit any detectable transcriptional response despite its ability to stimulate beta-arrestin2-dependent ERK1/2 activation. These results indicate that the transcriptional response to AT1a receptor activation primarily reflects heterotrimeric G protein activation. Although beta-arrestin1 and beta-arrestin2 are functionally specialized with respect to supporting G protein-independent ERK1/2 activation, their common effect is to dampen the transcriptional response by promoting receptor desensitization.

PMID:
18006496
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk