Format

Send to

Choose Destination
See comment in PubMed Commons below
Cardiovasc Res. 2008 Jan 15;77(2):344-52. Epub 2007 Oct 25.

cGMP signalling in pre- and post-conditioning: the role of mitochondria.

Author information

  • 1Department of Biology, Portland State University, PO Box 751, Portland, OR 97201, USA.

Abstract

Much of cell death from ischaemia/reperfusion in heart and other tissues is generally thought to arise from mitochondrial permeability transition (MPT) in the first minutes of reperfusion. In ischaemic pre-conditioning, agonist binding to G(i) protein-coupled receptors prior to ischaemia triggers a signalling cascade that protects the heart from MPT. We believe that the cytosolic component of this trigger pathway terminates in activation of guanylyl cyclase resulting in increased production of cGMP and subsequent activation of protein kinase G (PKG). PKG phosphorylates a protein on the mitochondrial outer membrane (MOM), which then causes the mitochondrial K(ATP) channel (mitoK(ATP)) on the mitochondrial inner membrane to open, leading to increased production of reactive oxygen species (ROS) by the mitochondria. This implies that the protective signal is somehow transmitted from the MOM to its inner membrane. This is accomplished by a series of intermembrane signalling steps that includes protein kinase C (PKCepsilon) activation. The resulting ROS then activate a second PKC pool which, through another signal transduction pathway termed the mediator pathway, causes inhibition of MPT and reduction in cell death.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk