Send to:

Choose Destination
See comment in PubMed Commons below
Diabetes. 2008 Feb;57(2):415-23. Epub 2007 Nov 14.

Inhibition of AMP-activated protein kinase protects pancreatic beta-cells from cytokine-mediated apoptosis and CD8+ T-cell-induced cytotoxicity.

Author information

  • 1Professor and Head of Department of Cell Biology, Division of Medicine, Sir Alexander Fleming Building, Imperial College, London, Exhibition Road, London SW7 2AZ, UK.



Apoptotic destruction of insulin-producing pancreatic beta-cells is involved in the etiology of both type 1 and type 2 diabetes. AMP-activated protein kinase (AMPK) is a sensor of cellular energy charge whose sustained activation has recently been implicated in pancreatic beta-cell apoptosis and in islet cell death posttransplantation. Here, we examine the importance of beta-cell AMPK in cytokine-induced apoptosis and in the cytotoxic action of CD8(+) T-cells.


Clonal MIN6 beta-cells or CD1 mouse pancreatic islets were infected with recombinant adenoviruses encoding enhanced green fluorescent protein (eGFP/null), constitutively active AMPK (AMPK-CA), or dominant-negative AMPK (AMPK-DN) and exposed or not to tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma. Apoptosis was detected by monitoring the cleavage of caspase-3 and DNA fragmentation. The cytotoxic effect of CD8(+) purified T-cells was examined against pancreatic islets from NOD mice infected with either null or the AMPK-DN-expressing adenoviruses.


Exposure to cytokines, or expression of AMPK-CA, induced apoptosis in clonal MIN6 beta-cells and CD1 mouse pancreatic islets. By contrast, overexpression of AMPK-DN protected against the proapoptotic effect of these agents, in part by preventing decreases in cellular ATP, and lowered the cytotoxic effect of CD8(+) T-cells toward NOD mouse islets.


Inhibition of AMPK activity enhances islet survival in the face of assault by either cytokines or T-cells. AMPK may therefore represent an interesting therapeutic target to suppress immune-mediated beta-cell destruction and may increase the efficacy of islet allografts in type 1 diabetes.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk