Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 2008 Jan;74(1):233-44. Epub 2007 Nov 2.

Analysis of fungal flora in indoor dust by ribosomal DNA sequence analysis, quantitative PCR, and culture.

Author information

  • 1Institute of Biotechnology, P.O. Box 56, FIN-00014 University of Helsinki, Finland. miia.pitkaranta@helsinki.fi

Abstract

In recent years increasing attention has been given to the potential health effects of fungal exposure in indoor environments. We used large-scale sequencing of the fungal internal transcribed spacer region (ITS) of nuclear ribosomal DNA to describe the mycoflora of two office buildings over the four seasons. DNA sequencing was complemented by cultivation, ergosterol determination, and quantitative PCR analyses. Sequences of 1,339 clones were clustered into 394 nonredundant fungal operational taxonomical units containing sequences from 18 fungal subclasses. The observed flora differed markedly from that recovered by cultivation, the major differences being the near absence of several typical indoor mold genera such as Penicillium and Aspergillus spp. and a high prevalence of basidiomycetes in clone libraries. A total of 55% of the total diversity constituted of unidentifiable ITS sequences, some of which may represent novel fungal species. Dominant species were Cladosporium cladosporioides and C. herbarum, Cryptococcus victoriae, Leptosphaerulina americana and L. chartarum, Aureobasidium pullulans, Thekopsora areolata, Phaeococcomyces nigricans, Macrophoma sp., and several Malassezia species. Seasonal differences were observed for community composition, with ascomycetous molds and basidiomycetous yeasts predominating in the winter and spring and Agaricomycetidae basidiomycetes predominating in the fall. The comparison of methods suggested that the cloning, cultivation, and quantitative PCR methods complemented each other, generating a more comprehensive picture of fungal flora than any of the methods would give alone. The current restrictions of the methods are discussed.

PMID:
17981947
[PubMed - indexed for MEDLINE]
PMCID:
PMC2223223
Free PMC Article

Images from this publication.See all images (2)Free text

FIG. 1.
FIG. 2.

Publication Types, MeSH Terms, Substances, Secondary Source ID

Publication Types

MeSH Terms

Substances

Secondary Source ID

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk