Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Exp Biol. 2007 Nov;210(Pt 22):3979-89.

An antidiuretic peptide (Tenmo-ADFb) with kinin-like diuretic activity on Malpighian tubules of the house cricket, Acheta domesticus (L.).

Author information

  • 1School of Biological and Chemical Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK. g.coast@bbk.ac.uk

Abstract

Acheta domesticus is reported to have an antidiuretic hormone that reduces Malpighian tubule secretion. Identified peptides known to work in this way (Tenmo-ADFa and ADFb, and Manse-CAP(2b)) were tested as candidates for the unidentified hormone, along with their second messenger, cyclic GMP. Only Tenmo-ADFb was active, but was diuretic, as was 8-bromo cyclic GMP. The activity of Tenmo-ADFb is comparable to that of the cricket kinin neuropeptide, Achdo-KII, but it is much less potent. Its activity was unaffected by deleting either the six N-terminal residues or the C-terminal phenylalanine. At high concentrations, tubule secretion is doubled by Tenmo-ADFb and Achdo-KII, but their actions are non-additive, suggesting they have a similar mode of action. Both stimulate a non-selective KCl and NaCl diuresis, which is consistent with the opening of a transepithelial Cl(-) conductance. In support of this, the diuretic response to Tenmo-ADFb and Achdo-KII is prevented by a ten-fold reduction in bathing fluid chloride concentration, and both peptides cause the lumen-positive transepithelial voltage to collapse. The Cl(-) conductance pathway appears likely to be transcellular, because the Cl(-) channel blocker DPC reduces both basal and peptide-stimulated rates of secretion. The effects of 8-bromo cyclic GMP on transepithelial voltage and composition of the secreted fluid are markedly different from those of Tenmo-ADFb. This is the first report of the antidiuretic factor Tenmo-ADFb stimulating tubule secretion. Although the actions of Tenmo-ADFb are indistinguishable from those of Achdo-KII, it is unlikely to act at a kinin receptor, because the core sequence (residues 7-12) lacks the Phe and Trp residues that are critical for kinin activity.

PMID:
17981866
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk