Format

Send to:

Choose Destination
See comment in PubMed Commons below
Chemosphere. 2008 Feb;70(8):1375-82. Epub 2007 Oct 30.

Enhancement of the CO(2) retention capacity of X zeolites by Na- and Cs-treatments.

Author information

  • 1Department of Chemical Engineering and Environmental Technology, University of Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain.

Abstract

Adsorption of carbon dioxide on alkaline modified X zeolites was investigated by temperature programmed desorption (TPD) analysis of these materials previously saturated with CO(2) at 50, 100 and 200 degrees C. Parent X zeolite (in its sodium form) was treated with different sodium and cesium aqueous solutions, using both carbonates and hydroxides as precursors. The resulting materials were characterised by nitrogen physisorption, XRD, and NH(3)-TPD, in order to determine their morphological, crystallographic and chemical properties. Slight desilication phenomena were observed using hydroxides as precursors, whereas the treatment with Cs salts lead to higher crystallinity losses. Several successive adsorption-desorption cycles were carried out in order to check the regenerability of the adsorbents. Cesium-treated zeolites present higher carbon dioxide retention capacities than the sodium treated and than the parent material. When working with these Cs-modified materials, the desorption takes place mainly at temperatures between 250 and 400 degrees C, results of great practical interest, since it allows the use these kinds of materials for adsorption-desorption cycles. The evolution of the retention capacity with temperature is also markedly more positive for Cs-treated zeolite, especially when carbonate is used as the precursor. These materials maintain high retention capacities at 100 degrees C (10mg g(-1)) and even at 200 degrees C (3mg g(-1)), temperatures at which the most of the adsorbents are inactive.

PMID:
17977576
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk