Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Brain Res. 2007 Dec 12;1184:96-107. Epub 2007 Oct 10.

Reorganization of functional brain maps after exercise training: Importance of cerebellar-thalamic-cortical pathway.

Author information

  • 1Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA. holschne@usc.edu

Abstract

Exercise training (ET) causes functional and morphologic changes in normal and injured brain. While studies have examined effects of short-term (same day) training on functional brain activation, less work has evaluated effects of long-term training, in particular treadmill running. An improved understanding is relevant as changes in neural reorganization typically require days to weeks, and treadmill training is a component of many neurorehabilitation programs. Adult, male rats (n=10) trained to run for 40 min/day, 5 days/week on a Rotarod treadmill at 11.5 cm/s, while control animals (n=10) walked for 1 min/day at 1.2 cm/s. Six weeks later, [(14)C]-iodoantipyrine was injected intravenously during treadmill walking. Regional cerebral blood flow-related tissue radioactivity was quantified by autoradiography and analyzed in the three-dimensionally reconstructed brain by statistical parametric mapping. Exercised compared to nonexercised rats demonstrated increased influence of the cerebellar-thalamic-cortical (CbTC) circuit, with relative increases in perfusion in deep cerebellar nuclei (medial, interposed, lateral), thalamus (ventrolateral, midline, intralaminar), and paravermis, but with decreases in the vermis. In the basal ganglia-thalamic-cortical circuit, significant decreases were noted in sensorimotor cortex and striatum, with associated increases in the globus pallidus. Additional significant changes were noted in the ventral pallidum, superior colliculus, dentate gyrus (increases), and red nucleus (decreases). Following ET, the new dynamic equilibrium of the brain is characterized by increases in the efficiency of neural processing (sensorimotor cortex, striatum, vermis) and an increased influence of the CbTC circuit. Cerebral regions demonstrating changes in neural activation may point to alternate circuits, which may be mobilized during neurorehabilitation.

PMID:
17964551
[PubMed - indexed for MEDLINE]
PMCID:
PMC2692362
Free PMC Article

Images from this publication.See all images (2)Free text

Figure 1
Figure 2
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk