Display Settings:

Format

Send to:

Choose Destination
Biochem Biophys Res Commun. 2007 Dec 28;364(4):850-5. Epub 2007 Oct 25.

SMN protects cells against mutant SOD1 toxicity by increasing chaperone activity.

Author information

  • 1Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, LRB 325, Worcester, MA 01605, USA.

Abstract

Deletion or mutation of the survival of motor neuron (SMN1) gene causes Spinal Muscular Atrophy (SMA), a motor neuron degenerative disease. To study the SMN function, we co-transfected mouse NSC34 cells with SMN and mutant superoxide dismutase 1 (SOD1) constructs. We demonstrated that SMN protected NSC34 cells against cell death induced by mutant SOD1 under oxidative stress. Further studies indicated that over-expression of wild-type SMN up-regulated chaperone activity. In contrast, chaperone activity was decreased in cells expressing SMN mutant Y272C or in cells with SMN suppressed by shRNA. In vitro assays using bacteria lysates expressing GST-SMN or purified GST-SMN protein showed that the GST-SMN reduced catalase aggregation, indicating that SMN may possess chaperone activity. We conclude that SMN plays a protective role in motor neurons by its chaperone activity. Our results provide support for the potential development of therapy for SMA and amyotrophic lateral sclerosis (ALS).

PMID:
17964281
[PubMed - indexed for MEDLINE]
PMCID:
PMC2169267
Free PMC Article

Images from this publication.See all images (4)Free text

Fig. 1
Fig. 2
Fig. 3
Fig. 4
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk