Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biodegradation. 2008 Jul;19(4):567-76. Epub 2007 Oct 24.

Conversion of polycyclic aromatic hydrocarbons by Sphingomonas sp. VKM B-2434.

Author information

  • 1G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, Prospekt Nauki, 5, Pushchino, Moscow region, Russia.

Abstract

A versatile bacterial strain able to convert polycyclic aromatic hydrocarbons (PAHs) was isolated, and a conversion by the isolate of both individual substances and PAH mixtures was investigated. The strain belonged to the Sphingomonas genus as determined on the basis of 16S rRNA analysis and was designated as VKM B-2434. The strain used naphthalene, acenaphthene, phenanthrene, anthracene and fluoranthene as a sole source of carbon and energy, and cometabolically oxidized fluorene, pyrene, benz[a]anthracene, chrysene and benzo[a]pyrene. Acenaphthene and fluoranthene were degraded by the strain via naphthalene-1,8-dicarboxylic acid and 3-hydroxyphthalic acid. Conversion of most other PAHs was confined to the cleavage of only one aromatic ring. The major oxidation products of naphthalene, phenanthrene, anthracene, chrysene, and benzo[a]pyrene were identified as salicylic acid, 1-hydroxy-2-naphthoic acid, 3-hydroxy-2-naphthoic acid, o-hydroxyphenanthroic acid and o-hydroxypyrenoic acid, respectively. Fluorene and pyrene were oxidized mainly to hydroxyfluorenone and dihydroxydihydropyrene, respectively. Oxidation of phenanthrene and anthracene to the corresponding hydroxynaphthoic acids occurred quantitatively. The strain converted phenanthrene, anthracene, fluoranthene and carbazole of coal-tar-pitch extract.

PMID:
17957485
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Springer
    Loading ...
    Write to the Help Desk