Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
EMBO J. 2007 Nov 14;26(22):4646-56. Epub 2007 Oct 18.

Regulation of histone modification and cryptic transcription by the Bur1 and Paf1 complexes.

Author information

  • 1Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.

Abstract

The Bur1-Bur2 and Paf1 complexes function during transcription elongation and affect histone modifications. Here we describe new roles for Bur1-Bur2 and the Paf1 complex. We find that histone H3 K36 tri-methylation requires specific components of the Paf1 complex and that K36 tri-methylation is more strongly affected at the 5' ends of genes in paf1delta and bur2delta strains in parallel with increased acetylation of histones H3 and H4. Interestingly, the 5' increase in histone acetylation is independent of K36 methylation, and therefore is mechanistically distinct from the methylation-driven deacetylation that occurs at the 3' ends of genes. Finally, Bur1-Bur2 and the Paf1 complex have a second methylation-independent function, since bur2delta set2delta and paf1delta set2delta double mutants display enhanced histone acetylation at the 3' ends of genes and increased cryptic transcription initiation. These findings identify new functions for the Paf1 and Bur1-Bur2 complexes, provide evidence that histone modifications at the 5' and 3' ends of coding regions are regulated by distinct mechanisms, and reveal that the Bur1-Bur2 and Paf1 complexes repress cryptic transcription through a Set2-independent pathway.

PMID:
17948059
[PubMed - indexed for MEDLINE]
PMCID:
PMC2080810
Free PMC Article

Images from this publication.See all images (8)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk