Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Immunol. 2007 Nov 1;179(9):5803-10.

Targeting the Wilms tumor antigen 1 by TCR gene transfer: TCR variants improve tetramer binding but not the function of gene modified human T cells.

Author information

  • 1Department of Immunology and Molecular Pathology, University College London, Hampstead Campus, Royal Free Hospital, London, United Kingdom.

Abstract

We have previously described the functional activity of a human TCR specific for an HLA-A2-presented peptide derived from the Wilms tumor Ag 1 (WT1). Recent studies showed that the expression and function of human TCR was improved by the introduction of an additional disulfide bond between the alpha- and beta-chains or by the exchange of the human constant region for murine sequences. In this study, we analyzed the functional activity of WT1-TCR variants expressed in Jurkat cells and in primary T cells. The introduction of cysteine residues or murine constant sequences into the WT1-TCR did not result in a global reduction of mispairing with wild-type TCR chains. Instead, the level of mispairing was affected by the variable region sequences of the wild-type TCR chains. The analysis of freshly transduced peripheral blood T cells showed that the transfer of modified TCR constructs generated a higher frequency of Ag-responsive T cells than the transfer of the wild-type TCR. After several rounds of peptide stimulation this difference was no longer observed, as all transduced T cell populations accumulated approximately 90% of Ag-responsive T cells. Although the Ag-responsive T cells expressing the modified TCR bound the HLA-A2/WT1 tetramer more efficiently than T cells expressing the wild-type TCR, this did not improve the avidity of transduced T cells nor did it result in a measurable enhancement in IFN-gamma production and cytotoxic activity. This indicated that the enhanced tetramer binding of modified WT1-TCR variants was not associated with improved WT1-specific T cell function.

PMID:
17947653
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk