Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Physiol Rev. 2007 Oct;87(4):1343-75.

Hedgehog signaling in development and homeostasis of the gastrointestinal tract.

Author information

  • Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands. g.r.va_den_brink@lumc.nl

Abstract

The Hedgehog family of secreted morphogenetic proteins acts through a complex evolutionary conserved signaling pathway to regulate patterning events during development and in the adult organism. In this review I discuss the role of Hedgehog signaling in the development, postnatal maintenance, and carcinogenesis of the gastrointestinal tract. Three mammalian hedgehog genes, sonic hedgehog (Shh), indian hedgehog (Ihh), and desert hedgehog (Dhh) have been identified. Shh and Ihh are important endodermal signals in the endodermal-mesodermal cross-talk that patterns the developing gut tube along different axes. Mutations in Shh, Ihh, and downstream signaling molecules lead to a variety of gross malformations of the murine gastrointestinal tract including esophageal atresia, tracheoesophageal fistula, annular pancreas, midgut malrotation, and duodenal and anal atresia. These congenital malformations are also found in varying constellations in humans, suggesting a possible role for defective Hedgehog signaling in these patients. In the adult, Hedgehog signaling regulates homeostasis in several endoderm-derived epithelia, for example, the stomach, intestine, and pancreas. Finally, growth of carcinomas of the proximal gastrointestinal tract such as esophageal, gastric, biliary duct, and pancreatic cancers may depend on Hedgehog signaling offering a potential avenue for novel therapy for these aggressive cancers.

PMID:
17928586
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk