Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2007 Oct 10;27(41):11037-46.

Modulatory proteins can rescue a trafficking defective epileptogenic Nav1.1 Na+ channel mutant.

Author information

  • 1Department of Neurophysiopathology, Besta Neurological Institute, 20133 Milan, Italy.


Familial epilepsies are often caused by mutations of voltage-gated Na+ channels, but correlation genotype-phenotype is not yet clear. In particular, the cause of phenotypic variability observed in some epileptic families is unclear. We studied Na(v)1.1 (SCN1A) Na+ channel alpha subunit M1841T mutation, identified in a family characterized by a particularly large phenotypic spectrum. The mutant is a loss of function because when expressed alone, the current was no greater than background. Function was restored by incubation at temperature <30 degrees C, showing that the mutant is trafficking defective, thus far the first case among neuronal Na+ channels. Importantly, also molecular interactions with modulatory proteins or drugs were able to rescue the mutant. Protein-protein interactions may modulate the effect of the mutation in vivo and thus phenotype; variability in their strength may be one of the causes of phenotypic variability in familial epilepsy. Interacting drugs may be used to rescue the mutant in vivo.

Comment in

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk