Send to:

Choose Destination
See comment in PubMed Commons below
Arch Physiol Biochem. 2007 Jun;113(3):154-61.

Advanced glycation endproducts influence the mRNA expression of RAGE, RANKL and various osteoblastic genes in human osteoblasts.

Author information

  • 1Clinic of Internal Medicine III, Friedrich-Schiller-University Jena, Germany.


Glycation reactions resulting in the generation and accumulation of advanced glycation endproducts (AGEs) are potential mechanisms by which bone protein may be altered in vivo. AGEs accumulate in the bone increasingly with age come into close contact with osteoblasts or osteoclasts. The direct effect of AGEs on bone cells has not been thoroughly investigated. This study aimed to examine whether glycated bovine serum albumin (AGE - BSA) as an AGE modulate the mRNA expression of various genes in primary human osteoblast cultures. The following parameters were included: RAGE (receptor for AGEs), alkaline phosphatase, osteocalcin, osterix and RANKL (receptor activator of nuclear factor-kappaB ligand). Primary human osteoblast cultures were obtained from bone specimens of six patients with osteoarthrosis. Human osteoblasts were treated in AGE - BSA or control-BSA (non-glycated BSA) containing medium (5 mg/ml each) over a time course of seven days. After RT-PCR the mRNA expression was measured by real-time PCR. Related to control - BSA exposure, the mRNA expression of RAGE, RANKL and osterix increased during AGE - BSA treament. For alkaline phosphatase and osteocalcin a tendency of down-regulation was found. In summary, the study presents evidence that advanced glycation end products accumulated in bone alter osteoblasts by activation the AGE - RAGE pathway (RAGE mRNA up-regulation), inducing enhanced osteoclastogenesis (RANKL mRNA up-regulation) and impaired matrix mineralization (down-regulation of alkaline phosphatase and osteocalcin mRNA). Thus, AGEs may play a functional role in the development of bone diseases (e.g. osteoporosis).

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis
    Loading ...
    Write to the Help Desk