Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Ther. 2008 Jan;16(1):66-73. Epub 2007 Oct 2.

RNA aptamer-targeted inhibition of NF-kappa B suppresses non-small cell lung cancer resistance to doxorubicin.

Author information

  • 1Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA. mi001@duke.edu

Abstract

Due to the prevalence of tumor chemoresistance, the clinical response of advanced non-small cell lung cancer (NSCLC) to chemotherapy is poor. We suppressed tumor resistance to doxorubicin (Dox) in A549 cells, a human NSCLC cell line, both in vitro and in vivo in a lung tumor xenograft model, using a novel adenoviral expression system to deliver an RNA aptamer (A-p50) that specifically inhibits nuclear factor-kappaB (NF-kappaB) activation. By achieving selective, targeted, and early inhibition of NF-kappaB activity, we demonstrate that NF-kappaB plays a critical role in Dox-induced chemoresistance by regulating genes involved in proliferation (Ki-67), response to DNA damage (GADD153), antiapoptosis (Bcl-XL), and pH regulation (CA9). This Dox-induced NF-kappaB activation and subsequent chemoresistance is dependent on expression of p53. We also demonstrate that NF-kappaB promotes angiogenesis in the presence of Dox via the hypoxia-inducible factor-1alpha/vascular endothelial growth factor (HIF-1alpha/VEGF) pathway, revealing a previously unknown mechanism of NSCLC resistance to Dox. These studies provide important insights into the mechanisms of Dox-induced chemoresistance, and they demonstrate a novel, effective, and clinically practical strategy for interfering with these processes.

PMID:
17912235
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk