Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Genes Chromosomes Cancer. 2008 Jan;47(1):26-33.

Mutations of FLT3, NRAS, KRAS, and PTPN11 are frequent and possibly mutually exclusive in high hyperdiploid childhood acute lymphoblastic leukemia.

Author information

  • 1Department of Clinical Genetics, University Hospital, Lund, Sweden.

Abstract

Although it has been suggested that mutations of the FLT3, NRAS, KRAS, and PTPN11 genes are particularly frequent in high hyperdiploid (>50 chromosomes) pediatric acute lymphoblastic leukemias (ALLs), this has as yet not been confirmed in a large patient cohort. Furthermore, it is unknown whether mutations of these genes coexist in hyperdiploid cases. We performed mutation analyses of FLT3, NRAS, KRAS, and PTPN11 in a consecutive series of 78 high hyperdiploid ALLs. Twenty-six (33%) of the cases harbored a mutation, comprising six activating point mutations and one internal tandem duplication of FLT3 (7/78 cases; 9.0%), eight codon 12, 13, or 61 NRAS mutations (8/78 cases; 10%), five codon 12 or 13 KRAS mutations (5/78 cases, 6.4%), and seven exon 3 or 13 PTPN11 mutations (7/78 cases; 9.0%). No association was seen between the presence of a mutation in FLT3, NRAS, KRAS, or PTPN11 and gender, age, white blood cell count, or relapse, suggesting that they do not confer a negative prognostic impact. Only one case harbored mutations in two different genes, suggesting that mutations of these four genes are generally mutually exclusive. In total, one third of the cases harbored a FLT3, NRAS, KRAS, or PTPN11 mutation, identifying the RTK-RAS signaling pathway as a potential target for novel therapies of high hyperdiploid pediatric ALLs.

PMID:
17910045
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk