Send to

Choose Destination
See comment in PubMed Commons below
Lipids. 2007 Nov;42(11):981-90. Epub 2007 Sep 19.

Oxygenation of 1-docosahexaenoyl lysophosphatidylcholine by lipoxygenases; conjugated hydroperoxydiene and dihydroxytriene derivatives.

Author information

  • 1College of Pharmacy, Chungnam National University, Yuseong-ku, Taejon, 305-764, Korea.


Oxygenation of 1-docosahexaenoyl lysophosphatidylcholine (docosahexaenoyl-lysoPC) by soybean lipoxygenase-1 (LOX-1) or porcine leukocyte LOX was examined. The oxidized products were identified to be hydroperoxydocosahexaenoyl-lysoPC by UV and LC/MS spectrometric analyses. In SP-HPLC and chiral phase-HPLC analyses, the products from the oxygenation of docosahexaenoyl-lysoPC by soybean LOX-1 and porcine leukocyte LOX were found to contain hydroperoxide group mainly at C-17 and C-14, respectively with the S form as a major enantiomer. Next, the sequential exposure of docosahexaenoyl-lysoPC to soybean LOX-1 and porcine leukocyte LOX led to the formation of conjugated triene derivatives possessing a maximal absorption at 271 nm with shoulders at 262 and 281 nm. Based on MS-MS analysis, the conjugated triene derivatives were identified to be 10,17- or 16,17-dihydroxydocosahexaenoyl-lysoPC analogues, suggesting that the diols were produced mainly from hydrolysis of 16,17(S)-epoxide intermediate. In kinetic studies, docosahexaenoyl-lysoPC was more favorable than docosahexaenoic acid as substrate for soybean LOX-1 or leukocyte LOX. Taken together, it is proposed that docosahexaenoyl-lysoPC can be oxygenated as substrates for some lipoxygenases to form conjugated diene and/or triene derivatives.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk