Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 2007 Nov;27(22):7856-64. Epub 2007 Sep 17.

Histone H3 K4 demethylation during activation and attenuation of GAL1 transcription in Saccharomyces cerevisiae.

Author information

  • 1Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA.

Abstract

In mammalian cells, histone lysine demethylation is carried out by two classes of enzymes, the LSD1/BHC110 class and the jumonji class. The enzymes of the jumonji class in the yeast Saccharomyces cerevisiae have recently also been shown to have lysine demethylation activity. Here we report that the protein encoded by YJR119c (termed KDM5), coding for one of five predicted jumonji domain proteins in yeast, specifically demethylates trimethylated histone H3 lysine 4 (H3K4me3), H3K4me2, and H3K4me1 in vitro. We found that loss of KDM5 increased mono-, di-, and trimethylation of lysine 4 during activation of the GAL1 gene. Interestingly, cells deleted of KDM5 also displayed a delayed reduction of K4me3 upon reestablishment of GAL1 repression. These results indicate that K4 demethylation has two roles at GAL1, first to establish appropriate levels of K4 methylation during gene activation and second to remove K4 trimethylation during the attenuation phase of transcription. Thus, analysis of lysine demethylation in yeast provides new insight into the physiological roles of jumonji demethylase enzymes.

PMID:
17875926
[PubMed - indexed for MEDLINE]
PMCID:
PMC2169161
Free PMC Article

Images from this publication.See all images (6)Free text

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk