Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Biomacromolecules. 2007 Oct;8(10):3153-61. Epub 2007 Sep 14.

The specific recognition of a cell binding sequence derived from type I collagen by Hep3B and L929 cells.

Author information

  • 1Department of Chemical & Biomolecular Engineering, and Division of Bioengineering, National University of Singapore, Singapore.


In this study, the affinity of two different cell types toward a specific cell binding sequence (Gly-Phe-Hyp-Gly-Glu-Arg or GFOGER) derived from type I collagen using peptide template (PT)-assembled collagen peptides of different triple helicity as a model for natural collagen is examined. A series of biophysical studies, including melting curve analysis and circular dichroism spectroscopy, demonstrated the presence of stable triple-helical conformation in the PT-assembled (GPO)3-GFOGER-(GPO)3, (GPO)-GFOGER-(GPO), and (Pro-Hyp-Gly)5 solution. Conversely, non-templated peptides, except (GPO)3-GFOGER-(GPO)3, showed no evidence of assembly into triple-helical structure. Biological assays, including cell adhesion, competitive inhibition, and immunofluorescence staining, revealed a correlation of triple-helical conformation with the cellular recognition of GFOGER in an integrin-specific manner. The triple helix was shown to be important, but not crucial for cell adhesion to native collagen. Hep3B and L929 cells displayed significant differences in the recognition of GFOGER, mainly because of the differences in their expression of specific integrin receptors for collagen. For example, PT-assembled (GPO)3-GFOGER-(GPO)3 was shown to perform comparably to collagen for L929, but not Hep3B, cell adhesion. The result showed that a specific cell binding motif may not fully mimic the extracellular matrix (ECM) microenvironment, suggesting the need to use a combination of two or more cell binding sequences for targeting a wide range of integrin receptors expressed by a specific cell type to better mimic the ECM.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk