pH-dependent binding of the Epsin ENTH domain and the AP180 ANTH domain to PI(4,5)P2-containing bilayers

J Mol Biol. 2007 Oct 19;373(2):412-23. doi: 10.1016/j.jmb.2007.08.016. Epub 2007 Aug 21.

Abstract

Epsin and AP180 are essential components of the endocytotic machinery, which controls internalization of protein receptors and other macromolecules at the cell surface. Epsin and AP180 are recruited to the plasma membrane by their structurally and functionally related N-terminal ENTH and ANTH domains that specifically recognize PtdIns(4,5)P2. Here, we show that membrane anchoring of the ENTH and ANTH domains is regulated by the acidic environment. Lowering the pH enhances PtdIns(4,5)P2 affinity of the ENTH and ANTH domains reinforcing their association with lipid vesicles and monolayers. The pH dependency is due to the conserved histidine residues of the ENTH and ANTH domains, protonation of which is necessary for the strong PtdIns(4,5)P2 recognition, as revealed by liposome binding, surface plasmon resonance, NMR, monolayer surface tension and mutagenesis experiments. The pH sensitivity of the ENTH and ANTH domains is reminiscent to the pH dependency of the FYVE domain suggesting a common regulatory mechanism of membrane anchoring by a subset of the PI-binding domains.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptor Proteins, Vesicular Transport / analysis
  • Adaptor Proteins, Vesicular Transport / chemistry*
  • Adaptor Proteins, Vesicular Transport / metabolism
  • Amino Acid Sequence
  • Animals
  • Binding Sites
  • COS Cells
  • Chlorocebus aethiops
  • Green Fluorescent Proteins / genetics
  • Green Fluorescent Proteins / metabolism
  • Histidine / chemistry
  • Histidine / metabolism
  • Humans
  • Hydrogen-Ion Concentration
  • Lipid Bilayers / chemistry*
  • Lipid Bilayers / metabolism
  • Magnetic Resonance Spectroscopy
  • Models, Molecular
  • Molecular Sequence Data
  • Monomeric Clathrin Assembly Proteins / analysis
  • Monomeric Clathrin Assembly Proteins / chemistry*
  • Monomeric Clathrin Assembly Proteins / metabolism
  • Phosphatidylinositol 4,5-Diphosphate / chemistry*
  • Phosphatidylinositol 4,5-Diphosphate / metabolism
  • Protein Structure, Tertiary
  • Rats
  • Sequence Alignment

Substances

  • Adaptor Proteins, Vesicular Transport
  • Lipid Bilayers
  • Monomeric Clathrin Assembly Proteins
  • Phosphatidylinositol 4,5-Diphosphate
  • clathrin assembly protein AP180
  • epsin
  • Green Fluorescent Proteins
  • Histidine