Format

Send to:

Choose Destination
See comment in PubMed Commons below
Gene Ther. 2007 Nov;14(21):1549-54. Epub 2007 Sep 6.

Lentiviral vector conferring resistance to mycophenolate mofetil and sensitivity to ganciclovir for in vivo T-cell selection.

Author information

  • 1Transplantation Biology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.

Abstract

Several clinical studies of gene-modified T cells have shown limited in vivo function of the cells, immunogenicity of the transgene, and lack of a selective advantage for gene-modified T cells. To address these problems, we developed a lentiviral vector (LV) that provides a selectable, proliferative advantage and potentially decreases immunogenicity for transduced T cells. The bicistronic vector expressed two genes linked with an internal ribosomal entry site. One gene is a variant of the inosine monophosphate dehydrogenase 2, inosine monophosphate dehydrogenase (IMPDH(IY)), conferring resistance to the immunosuppressive drug mycophenolate mofetil (MMF). The other is a suicide gene, herpes simplex virus thymidine kinase (HSV-TK), rendering proliferating cells sensitive to ablation with ganciclovir, fused to the selectable transmembrane marker DeltaCD34 (DeltaCD34/TK). Cells transduced with LV-DeltaCD34/TK.IMPDH(IY) were efficiently enriched by immunomagnetic selection for CD34, proliferated in 0.5-5 microM MMF, and were killed by 0.5-25 microg ml(-1) ganciclovir. We demonstrate efficient selection and killing of gene-modified cells and suggest LV-DeltaCD34/TK.IMPDH(IY)-transduced T cells could be used to facilitate allogeneic hematopoietic cell engraftment. The expression of IMPDH(IY) would allow in vivo selection with MMF, and DeltaCD34/TK expression would allow rapid and safe elimination of transduced T cells if graft-versus-host disease developed.

PMID:
17805303
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk