Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Orthop Res. 2008 Feb;26(2):255-63.

Use of a bioscaffold to improve healing of a patellar tendon defect after graft harvest for ACL reconstruction: A study in rabbits.

Author information

  • 1Musculoskeletal Research Center, Department of Bioengineering, University of Pittsburgh, 405 Center for Bioengineering, 300 Technology Drive, Pittsburgh, Pennsylvania 15219, USA.

Abstract

Following harvest of a bone-patellar tendon-bone (BPTB) autograft, the central third of the patellar tendon (PT) does not heal well. The healing tissues also form adhesions to the fat pad and can cause abnormal patellofemoral joint motion. The hypotheses were that a bioscaffold could enhance patellar tendon healing through contact guidance and chemotaxis, and the scaffold could serve as a barrier to decrease adhesion formation between the neo-PT and infrapatellar fat pad. In 20 New Zealand White rabbits, a central-third PT defect was created. One strip of porcine small intestinal submucosa (SIS) was attached to both the anterior and posterior sides of the PT defect of the SIS-treated group (n = 10). For comparison, a central defect was left nontreated (n = 10). At 12 weeks, histomorphology was examined using Masson's trichrome staining. The cross-sectional area (CSA) was determined with a laser micrometer, and the central BPTB complexes were tested in uniaxial tension. SIS-treated samples showed a greater amount of healing tissue with denser and well-oriented collagen fibers and more spindle-shaped cells. There was no noticeable adhesion formation in the SIS-treated group. For the nontreated group, there were significantly more and diffuse adhesive formations. The SIS-treated group also had a 68% increase in neo-PT CSA, 98% higher stiffness, and 113% higher ultimate load than that in the nontreated group. SIS treatment increased the quantity of healing tissue, improved the histological appearance and biomechanical properties of the neo-PT, and prevented adhesion formation between the PT and fat pad.

(c) 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

PMID:
17763435
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk