Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2007 Oct 26;282(43):31257-66. Epub 2007 Aug 30.

Induction of endogenous uncoupling protein 3 suppresses mitochondrial oxidant emission during fatty acid-supported respiration.

Author information

  • 1John B. Pierce Laboratory and Cellular and Molecular Physiology, Yale University, New Haven, Connecticut 06519, USA.


Uncoupling protein 3 (UCP3) expression increases dramatically in skeletal muscle under metabolic states associated with elevated lipid metabolism, yet the function of UCP3 in a physiological context remains controversial. Here, in situ mitochondrial H(2)O(2) emission and respiration were measured in permeabilized fiber bundles prepared from both rat and mouse (wild-type) gastrocnemius muscle after a single bout of exercise plus 18 h of recovery (Ex/R) that induced a approximately 2-4-fold increase in UCP3 protein. Elevated uncoupling activity (i.e. GDP inhibitable) was evident in Ex/R fibers only upon the addition of palmitate (known activator of UCP3) or under substrate conditions eliciting substantial rates of H(2)O(2) production (i.e. respiration supported by succinate or palmitoyl-L-carnitine/malate but not pyruvate/malate), indicative of UCP3 activation by endogenous reactive oxygen species. In mice completely lacking UCP3 (ucp3(-/-)), Ex/R failed to induce uncoupling activity. Surprisingly, when UCP3 activity was inhibited by GDP (rats) or in the absence of UCP3 (ucp3(-/-)), H(2)O(2) emission was significantly (p < 0.05) higher in Ex/R versus non-exercised control fibers. Collectively, these findings demonstrate that the oxidant emitting potential of mitochondria is increased in skeletal muscle during recovery from exercise, possibly as a consequence of prolonged reliance on lipid metabolism and/or altered mitochondrial biochemistry/morphology and that induction of UCP3 in vivo mediates an increase in uncoupling activity that restores mitochondrial H(2)O(2) emission to non-exercised, control levels.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk