Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Med. 2007 Jul-Aug;13(7-8):344-9.

Zinc inhibits astrocyte glutamate uptake by activation of poly(ADP-ribose) polymerase-1.

Author information

  • 1Department of Neurology, University of California, San Francisco, California, USA. sang.suh@ucsf.edu

Abstract

Several processes by which astrocytes protect neurons during ischemia are now well established. However, less is known about how neurons themselves may influence these processes. Neurons release zinc (Zn2+) from presynaptic terminals during ischemia, seizure, head trauma, and hypoglycemia, and modulate postsynaptic neuronal function. Peak extracellular zinc may reach concentrations as high as 400 microM. Excessive levels of free, ionic zinc can initiate DNA damage and the subsequent activation of poly(ADP-ribose) polymerase 1 (PARP-1), which in turn lead to NAD+ and ATP depletion when DNA damage is extensive. In this study, cultured cortical astrocytes were used to explore the effects of zinc on astrocyte glutamate uptake, an energy-dependent process that is critical for neuron survival. Astrocytes incubated with 100 or 400 microM of zinc for 30 min showed significant decreases in ATP levels and glutamate uptake capacity. These changes were prevented by the PARP inhibitors benzamide or DPQ (3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone) or PARP-1 gene deletion (PARP-1 KO). These findings suggest that release of Zn2+ from neurons during brain insults could induce PARP-1 activation in astrocytes, leading to impaired glutamate uptake and exacerbation of neuronal injury.

PMID:
17728843
[PubMed - indexed for MEDLINE]
PMCID:
PMC1952665
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for ScholarOne, a Thomson Reuters business Icon for PubMed Central
    Loading ...
    Write to the Help Desk