Send to:

Choose Destination
See comment in PubMed Commons below
Anal Chim Acta. 2006 Oct 10;579(2):202-8. Epub 2006 Jul 18.

Simultaneous quantification of 17 trace elements in blood by dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) equipped with a high-efficiency sample introduction system.

Author information

  • 1Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.


A quadrupole inductively coupled plasma mass spectrometer (Q-ICP-MS) equipped with a dynamic reaction cell (DRC) and coupled with a desolvating nebulization system (APEX-IR) was employed to determine 17 elements (Al, As, Ba, Cd, Co, Cr, Li, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, V, and Zr) in blood samples. Ammonia (for Al, Cr, Mn, and V) and O2 (for As and Se) were used as reacting gases. Selection of the best flow rate of the gases and optimization of the quadrupole dynamic bandpass tuning parameter (RPq) were carried out, using digested blood diluted 1+9 with deionized water and spiked with 1 microg L(-1) of Al, Cr, Mn, V and 5 microgL(-1) of As and Se. Detection limits were determined in digested blood using the 3sigma criterion. The desolvating system allowed a sufficient sensitivity to be achieved to determine elements at levels of ng L(-1) without detriment of signal stability. The accuracy of the method was tested with the whole blood certified reference material (CRM), certified for Al, As, Cd, Co, Cr, Mn, Mo, Ni, Pb, Sb, Se, and V, and with indicative values for Ba, Li, Sn, Sr, and Zr. The addition calibration approach was chosen for analysis. In order to confirm the DRC data, samples were also analyzed by means of sector field inductively coupled plasma mass spectrometry (SF-ICP-MS), operating in medium (m/Deltam=4000) and high (m/Deltam=10,000) resolution mode and achieving a good agreement between the two techniques.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk