Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biomaterials. 2007 Nov;28(33):5000-6. Epub 2007 Aug 27.

Systematic study of osteoblast response to nanotopography by means of nanoparticle-density gradients.

Author information

  • 1Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093, Zurich, Switzerland.

Abstract

Features over a wide range of length scales affect the biological response to a surface. While the influence of micro-features has been extensively studied, the effect of nano-features has only rarely been systematically investigated. We have developed a simple method to produce nano-featured gradients by kinetically controlled adsorption of negatively charged silica nanoparticles onto positively charged, poly(ethylene imine) (PEI)-coated silicon wafers. Subsequent sintering of the particles allowed a tuning of the particle morphology and resulted in a firm anchoring of the particles to the surface. Particle-density gradients were characterized by atomic force microscopy (AFM). Cell experiments with rat calvarial osteoblasts (RCO) on nano-featured gradients exhibited a significant decrease in proliferation at locations with higher particle coverage. Seven days post seeding, the number of osteoblasts was eight times higher at positions without particles compared to positions with maximum particle coverage. While cells spread well and developed a well-organized actin network in the absence of particles, spreading and formation of a strong actin network was considerably hindered at locations with maximum particle density.

PMID:
17720241
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk