Send to:

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2007 Sep 19;129(37):11642-52. Epub 2007 Aug 23.

Rapid three-step cleavage of RNA and DNA model systems promoted by a dinuclear Cu(II) complex in methanol. energetic origins of the catalytic efficacy.

Author information

  • 1Department of Chemistry, Queen's University, Kingston, Ontario, Canada, K7L 3N6.


A dinuclear Cu(II) complex of 1,3-bis-N(1)-(1,5,9-triazacyclododecyl)propane with an associated methoxide (2-Cu(II)(2):(-OCH(3))) was prepared, and its kinetics of reaction with an RNA model (2-hydroxypropyl-p-nitrophenyl phosphate (1, HPNPP)) and two DNA models (methyl p-nitrophenyl phosphate (3) and iso-butyl p-chlorophenyl phosphate (4)) were studied in methanol solution at (s)(s)pH 7.2 +/- 0.2. X-ray diffraction structures of 2-Cu(II)(2):(-OH)(H(2)O)(CF(3)SO(3)-)(3):0.5CH(3)CH(2)OCH(2)CH(3) and 2-Cu(II)(2):(-OH)((C(6)H(5)CH(2)O)(2)PO(2)-)(CF(3)SO(3)-)2 show the mode of coordination of the bridging -OH and H(2)O between the two Cu(II) ions in the first complex and bridging -OH and phosphate groups in the second. The kinetic studies with 1 and 3 reveal some common preliminary steps prior to the chemical one of the catalyzed formation of p-nitrophenol. With 3, and also with the far less reactive substrate (4), two relatively fast events are cleanly observed via stopped-flow kinetics. The first of these is interpreted as a binding step which is linearly dependent on [catalyst] while the second is a unimolecular step independent of [catalyst] proposed to be a rearrangement that forms a doubly Cu(II)-coordinated phosphate. The catalysis of the cleavage of 1 and 3 is very strong, the first-order rate constants for formation of p-nitrophenol from the complex being approximately 0.7 s(-1) and 2.4 x 10(-3) s(-1), respectively. With substrate 3, 2-Cu(II)(2):(-OCH(3)) exhibits Michaelis-Mentin kinetics with a k(cat)/K(M) value of 30 M(-1) s(-1) which is 3.8 x 10(7)-fold greater than the methoxide promoted reaction of 3 (7.9 x 10(-7) M(-1) s(-1)). A free energy calculation indicates that the binding of 2-Cu(II)(2):(-OCH(3)) to the transition states for 1 and 3 cleavage stabilizes them by -21 and -24 kcal/mol, respectively, relative to that of the methoxide promoted reactions. The results are compared with a literature example where the cleavage of 1 in water is promoted by a dinuclear Zn(II) catalyst, and the energetic origins of the exalted catalysis of the 2-Cu(II)(2) and 2-Zn(II)(2) methanol systems are discussed.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk