Resource distribution influences mating system in the bobuck (Trichosurus cunninghami: Marsupialia)

Oecologia. 2007 Nov;154(1):227-36. doi: 10.1007/s00442-007-0823-y. Epub 2007 Aug 23.

Abstract

Mammalian mating systems are thought to be shaped by the spatial distribution and abundance of key resources, which in turn influence the spacing behaviour of individuals. In particular, female home range size is predicted to reflect the availability of key resources. We documented the availability and distribution of food and shelter resources for two neighbouring populations of bobucks, or mountain brushtail possums, Trichosurus cunninghami, that were characterised by different mating systems: our "forest population" was socially monogamous, whereas the "roadside population" was polygynous. Both silver wattle, Acacia dealbata, the main food resource for bobucks, and den-trees, which provided shelter, occurred at significantly higher density at the roadside site. The pattern of distribution of these two resources also differed between the sites. Both food and den-trees were scattered evenly throughout the roadside habitat. In contrast, den-trees were located predominantly at one end of the forest site, while silver wattle trees were located at the other. There was no significant difference in the amount of silver wattle, or in the number of den-trees, located within the home ranges of individual females at the two sites. However, forest females had home ranges, on average, almost three times the size of those of roadside females. At the roadside site, the size of female home ranges varied inversely with the density of silver wattle, indicating that these females ranged over as large an area as necessary to gain access to sufficient silver wattle trees. There was no such relationship among forest females. These populations provide a clear example of resource distribution determining female home range size. This influenced the number of female home ranges a male's home range overlapped with, which in turn determined the mating system. Such clear links between resource availability and mating system have not previously been established in a marsupial.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Ecosystem
  • Feeding Behavior / physiology
  • Female
  • Male
  • Reproduction / physiology*
  • Trichosurus / physiology*