Format

Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2007 Sep 1;179(5):3057-64.

Central memory Vgamma9Vdelta2 T lymphocytes primed and expanded by bacillus Calmette-Guérin-infected dendritic cells kill mycobacterial-infected monocytes.

Author information

  • 1Unit of Cellular Immunology Fabrizio Poccia, National Institute for Infectious Diseases Lazzaro Spallanzani, Instituto di Ricovero e Cura a Carattere Scientifico, Via Portuense 292, Rome, Italy. martino@inmi.it

Abstract

In humans, innate immune recognition of mycobacteria, including Mycobacterium tuberculosis and bacillus Calmette-Guérin (BCG), is a feature of cells as dendritic cells (DC) and gammadelta T cells. In this study, we show that BCG infection of human monocyte-derived DC induces a rapid activation of Vgamma9Vdelta2 T cells (the major subset of gammadelta T cell pool in human peripheral blood). Indeed, in the presence of BCG-infected DC, Vgamma9Vdelta2 T cells increase both their expression of CD69 and CD25 and the production of TNF-alpha and IFN-gamma, in contrast to DC treated with Vgamma9Vdelta2 T cell-specific Ags. Without further exogenous stimuli, BCG-infected DC expand a functionally cytotoxic central memory Vgamma9Vdelta2 T cell population. This subset does not display lymph node homing receptors, but express a high amount of perforin. They are highly efficient in the killing of mycobacterial-infected primary monocytes or human monocytic THP-1 cells preserving the viability of cocultured, infected DC. This study provides further evidences about the complex relationship between important players of innate immunity and suggests an immunoregulatory role of Vgamma9Vdelta2 T cells in the control of mycobacterial infection.

PMID:
17709520
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk