Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neuroscience. 2007 Sep 7;148(3):593-8. Epub 2007 Jul 17.

Neonatally born granule cells numerically dominate adult mice dentate gyrus.

Author information

  • 1Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

Abstract

Hippocampal granule cells (GCs) are continuously generated in the subgranular zone of the dentate gyrus (DG) and functionally incorporated to dentate neural circuits even in adulthood. This raises a question about the fate of neonatally born GCs in adult DG. Do they exist until adulthood or are they largely superseded by adult-born GCs? To investigate this question, we examined the contributions of postnatally born GCs to the adult mouse DG. C57BL/6 mice were grouped in three different postnatal (P) ages (group 1: P0, group 2: P7, and group 3: P35) and received a daily bromodeoxyuridine (BrdU) injection for three consecutive days (P0/1/2, P7/8/9, and P35/36/37, respectively) to label dividing cells. At 6 months old, hippocampal sections were prepared from the animals and immunostained with anti-BrdU antibody and an antibody against the homeobox prospero-like protein Prox1, a marker of GCs. We defined BrdU- and Prox1-double positive cells as newborn GCs and analyzed their density and distribution in the granule cell layer (gcl), revealing that newborn GCs of each group still existed 6 months after BrdU injections and that the density of GCs born during P0-2 (group 1) was significantly higher compared with the other groups. Although the density of newborn GCs in the each group did not differ between male and female, the radial distribution of them in gcl showed some differences, that is, male newborn GCs localized toward the molecular layer compared with female ones in group 1, while to the hilus in group 2. These results suggest that GCs born in early postnatal days numerically dominate adult DG and that there exist sex differences in GC localizations which depend on the time when they were born.

PMID:
17706367
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk