Display Settings:

Format

Send to:

Choose Destination
J Mol Diagn. 2007 Sep;9(4):441-51. Epub 2007 Aug 9.

DNA degradation test predicts success in whole-genome amplification from diverse clinical samples.

Author information

  • 1Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, MA 02115, USA.

Abstract

The need to apply modern technologies to analyze DNA from diverse clinical samples often stumbles on suboptimal sample quality. We developed a simple approach to assess DNA fragmentation in minute clinical samples of widely different origin and the likelihood of success of degradation-tolerant whole genome amplification (restriction and circularization-aided rolling circle amplification, RCA-RCA) and subsequent polymerase chain reaction (PCR). A multiplex PCR amplification of four glyceraldehyde-3-phosphate dehydrogenase amplicons of varying sizes was performed using genomic DNA from clinical samples, followed by size discrimination on agarose gel or fluorescent denaturing high-performance liquid chromatography (dHPLC). RCA-RCA followed by real-time PCR was also performed, for correlation. Even minimal quantities of longer PCR fragments ( approximately 300 to 400 bp), visible via high-sensitivity fluorescent dHPLC or agarose gel, were essential for the success of RCA-RCA and subsequent PCR-based assays. dHPLC gave a more accurate correlation between DNA fragmentation and sample quality than agarose gel electrophoresis. Multiplex-PCR-dHPLC predicted correctly the likelihood of assay success in formalin-fixed, paraffin-embedded samples fixed under controlled conditions and of different ages, in laser capture microdissection samples, in tissue print micropeels, and plasma-circulating DNA. Estimates of the percent information retained relative to snap-frozen DNA are derived for real-time PCR analysis. The assay is rapid and convenient and can be used widely to characterize DNA from any clinical sample of unknown quality.

PMID:
17690213
[PubMed - indexed for MEDLINE]
PMCID:
PMC1975106
Free PMC Article

Images from this publication.See all images (7)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk