Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2007 Oct 5;282(40):29414-23. Epub 2007 Aug 6.

Cytoskeletal anchoring of GLAST determines susceptibility to brain damage: an identified role for GFAP.

Author information

  • 1School of Biomedical Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia.

Abstract

Glial fibrillary acidic protein (GFAP) is an enigmatic protein; it currently has no unambiguously defined role. It is expressed in the cytoskeleton of astrocytes in the mammalian brain. We have used co-immunoprecipitation to identify in vivo binding partners for GFAP in the rat and pig brain. We demonstrate interactions between GFAP, the glutamate transporter GLAST, the PDZ-binding protein NHERF1, and ezrin. These interactions are physiologically relevant; we demonstrate in vitro that transport of D-aspartate (a glutamate analogue) is significantly increased in the presence of GFAP and NHERF1. Moreover, we demonstrate in vivo that expression of GFAP is essential in retaining GLAST in the plasma membranes of astrocytes after an hypoxic insult. These data indicate that the cytoskeleton of the astrocyte plays an important role in protecting the brain against glutamate-mediated excitotoxicity.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk