Display Settings:

Format

Send to:

Choose Destination
Diabetes. 2007 Nov;56(11):2677-82. Epub 2007 Aug 6.

Noninvasive magnetic resonance imaging of microvascular changes in type 1 diabetes.

Author information

  • 1Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Bldg. 149, 13th St., Charlestown, MA 02129, USA.

Abstract

OBJECTIVE:

The pathogenesis of type 1 diabetes involves autoimmune lymphocytic destruction of insulin-producing beta-cells and metabolic dysregulation. An early biomarker of pancreatic islet damage is islet microvascular dysfunction, and alterations in vascular volume, flow, and permeability have been reported in numerous models of type 1 diabetes. Consequently, the ability to noninvasively monitor the dynamics of the pancreatic microvasculature would aid in early diagnosis and permit the assessment, design, and optimization of individualized therapeutic intervention strategies.

RESEARCH DESIGN AND METHODS:

Here, we used the long circulating paramagnetic contrast agent, protected graft copolymer (PGC) covalently linked to gadolinium-diethylenetriaminepentaacetic acid residues (GdDTPAs) labeled with fluorescein isothiocyanate (PGC-GdDTPA-F), for the noninvasive semiquantitative evaluation of vascular changes in a streptozotocin (STZ)-induced mouse model of type 1 diabetes. Diabetic animals and nondiabetic controls were monitored by magnetic resonance imaging (MRI) after injection of PGC-GdDTPA-F.

RESULTS:

Our findings demonstrated a significantly greater accumulation of PGC-GdDTPA-F in the pancreata of diabetic animals compared with controls. MRI permitted the in vivo semiquantitative assessment and direct visualization of the differential distribution of PGC-GdDTPA-F in diabetic and control pancreata. Ex vivo histology revealed extensive distribution of PGC-GdDTPA-F within the vascular compartment of the pancreas, as well as considerable leakage of the probe into the islet interstitium. By contrast, in nondiabetic controls, PGC-GdDTPA-F was largely restricted to the pancreatic vasculature at the islet periphery.

CONCLUSIONS:

Based on these observations, we conclude that in the STZ model of type 1 diabetes, changes in vascular volume and permeability associated with early stages of the disease can be monitored noninvasively and semiquantitatively by MRI.

PMID:
17682091
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk