Send to:

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2007 Oct 1;37(4):1112-21. Epub 2007 Jun 27.

In vivo imaging of disturbed pre- and post-synaptic dopaminergic signaling via arachidonic acid in a rat model of Parkinson's disease.

Author information

  • 1Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bldg. 9, Room 1S126, Bethesda, MD 20892, USA.



Parkinson's disease involves loss of dopamine (DA)-producing neurons in the substantia nigra, associated with fewer pre-synaptic DA transporters (DATs) but more post-synaptic dopaminergic D2 receptors in terminal areas of these neurons.


Arachidonic acid (AA) signaling via post-synaptic D2 receptors coupled to cytosolic phospholipase A2 (cPLA2) will be reduced in terminal areas ipsilateral to a chronic unilateral substantia nigra lesion in rats given D-amphetamine, which reverses the direction of the DAT, but will be increased in rats given quinpirole, a D2-receptor agonist.


D-amphetamine (5.0 mg/kg i.p.), quinpirole (1.0 mg/kg i.v.), or saline was administered to unanesthetized rats having a chronic unilateral lesion of the substantia nigra. AA incorporation coefficients, k* (radioactivity/integrated plasma radioactivity), markers of AA signaling, were measured using quantitative autoradiography in 62 bilateral brain regions following intravenous [1-(14)C]AA.


In rats given saline (baseline), k* was elevated in 13 regions in the lesioned compared with intact hemisphere. Quinpirole increased k* in frontal cortical and basal ganglia regions bilaterally, more so in the lesioned than intact hemisphere. D-amphetamine increased k* bilaterally but less so in the lesioned hemisphere.


Increased baseline elevations of k* and increased responsiveness to quinpirole in the lesioned hemisphere are consistent with their higher D2-receptor and cPLA2 activity levels, whereas reduced responsiveness to D-amphetamine is consistent with dropout of pre-synaptic elements containing the DAT. In vivo imaging of AA signaling using dopaminergic drugs can identify pre- and post-synaptic DA changes in animal models of Parkinson's disease.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk