Send to

Choose Destination
See comment in PubMed Commons below
J Org Chem. 2007 Aug 31;72(18):6970-81. Epub 2007 Aug 4.

Bonded exciplexes. A new concept in photochemical reactions.

Author information

  • 1Department of Chemistry, University of Rochester, Rochester, New York 14627, USA.


Charge-transfer quenching of the singlet excited states of cyanoaromatic electron acceptors by pyridine is characterized by a driving force dependence that resembles those of conventional electron-transfer reactions, except that a plot of the log of the quenching rate constants versus the free energy of electron transfer is displaced toward the endothermic region by 0.5-0.8 eV. Specifically, the reactions with pyridine display rapid quenching when conventional electron transfer is highly endothermic. As an example, the rate constant for quenching of the excited dicyanoanthracene is 3.5 x 10(9) M(-1)s(-1), even though formation of a conventional radical ion pair, A*-D*+, is endothermic by approximately 0.6 eV. No long-lived radical ions or exciplex intermediates can be detected on the picosecond to microsecond time scale. Instead, the reactions are proposed to proceed via formation of a previously undescribed, short-lived charge-transfer intermediate we call a "bonded exciplex", A- -D+. The bonded exciplex can be formally thought of as resulting from bond formation between the unpaired electrons of the radical ions A*- and D*+. The covalent bonding interaction significantly lowers the energy of the charge-transfer state. As a result of this interaction, the energy decreases with decreasing separation distance, and near van der Waals contact, the A- -D+ bonded state mixes with the repulsive excited state of the acceptor, allowing efficient reaction to form A- -D+ even when formation of a radical ion pair A*-D*+ is thermodynamically forbidden. Evidence for the bonded exciplex intermediate comes from studies of steric and Coulombic effects on the quenching rate constants and from extensive DFT computations that clearly show a curve crossing between the ground state and the low-energy bonded exciplex state.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk