Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2007 Dec 21;282(51):36790-6. Epub 2007 Jul 31.

Detection of reactive oxygen species via endogenous oxidative pentose phosphate cycle activity in response to oxygen concentration: implications for the mechanism of HIF-1alpha stabilization under moderate hypoxia.

Author information

  • 1Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6072, USA.


The oxidative pentose phosphate cycle (OPPC) is necessary to maintain cellular reducing capacity during periods of increased oxidative stress. Metabolic flux through the OPPC increases stoichiometrically in response to a broad range of chemical oxidants, including those that generate reactive oxygen species (ROS). Here we show that OPPC sensitivity is sufficient to detect low levels of ROS produced metabolically as a function of the percentage of O2. We observe a significant decrease in OPPC activity in cells incubated under severe and moderate hypoxia (ranging from <0.01 to 4% O2), whereas hyperoxia (95% O2) results in a significant increase in OPPC activity. These data indicate that metabolic ROS production is directly dependent on oxygen concentration. Moreover, we have found no evidence to suggest that ROS, produced by mitochondria, are needed to stabilize hypoxia-inducible factor 1alpha (HIF-1alpha) under moderate hypoxia. Myxothiazol, an inhibitor of mitochondrial electron transfer, did not prevent HIF-1alpha stabilization under moderate hypoxia. Moreover, the levels of HIF-1alpha that we observed after exposure to moderate hypoxia were comparable between rho0 cells, which lack functional mitochondria, and the wild-type cells. Finally, we find no evidence for stabilization of HIF-1alpha in response to the non-toxic levels of H2O2 generated by the enzyme glucose oxidase. Therefore, we conclude that the oxygen dependence of the prolyl hydroxylase reaction is sufficient to mediate HIF-1alpha stability under moderate as well as severe hypoxia.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk