N-(trifluoromethylsulfonyl)aryloxytrifluoromethylsulfoximines [ArO-SO(CF3)=NTf] and N-aryltriflimides Ar-N(Tf)2 by thermal and photolytic dediazoniation of [ArN2][BF4] in [BMIM][Tf2N] ionic liquid: exploiting the ambident nucleophilic character of a "nonnucleophilic" anion

J Org Chem. 2007 Aug 31;72(18):6758-62. doi: 10.1021/jo0708801. Epub 2007 Aug 1.

Abstract

Arenediazonium tetrafluoroborate salts undergo metathesis on immobilization in 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonato)amide [BMIM][Tf(2)N]. The "noncoordinating", "nonnucleophilic" [Tf(2)N] anion acts as an ambident nucleophile toward the aryl cations, formed via thermal dediazoniation, to give predominantly the oxy anion quenching products [ArO-SO(CF(3))=NTf], with minimal formation of ArN(Tf)(2), irrespective of the nature of the substituent(s) on the ArN(2)+. Strong preference for the formation of oxygen trapping products did not change under photolytic conditions, where dediazoniation occurs at room temperature. A minimal amount of the Schiemann product ArF is also formed in both thermal and photolytic dediazoniation, depending on the substituent(s). Progress of dediazoniation in the IL (both thermal and photolytic) and the evolution of the products were directly monitored by (1)H and (19)F NMR. According to DFT (Density Functional Theory) calculations, PhN(Tf)(2) is more stable than PhO-SO(CF(3))=NTf by 15-17 kcal/mol, depending on the basis set. Inclusion of solvation effects (PCM, with acetone and with CH(2)ClCH(2)Cl as solvent) did not change this preference. The [ArN(2)][BF(4)] dediazoniation in [BMIM][Tf(2)N] resulted in synthesis and characterization of a series of hitherto unknown [ArO-SO(CF(3))=NTf] compounds. The X-ray structure of MesO-SO(CF(3))=NTf (Mes = mesityl) is reported. On the basis of extraction studies, suitable solvent systems have been identified that remove the products without dissolving [BMIM][NTf(2)], thus overcoming product recovery difficulties typically associated with the use of this IL.