Format

Send to

Choose Destination
See comment in PubMed Commons below
Arthritis Rheum. 2007 Aug;56(8):2535-48.

In vivo inhibition of angiogenesis by interleukin-13 gene therapy in a rat model of rheumatoid arthritis.

Author information

  • 1University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA.

Abstract

OBJECTIVE:

Interleukin-13 (IL-13) is a pleiotropic cytokine that can affect vessel formation, an important component of the rheumatoid arthritis (RA) synovial tissue pannus. The purpose of this study was to use a gene therapy approach to investigate the role of IL-13 in angiogenesis in vivo, using a rat adjuvant-induced arthritis model of RA.

METHODS:

Ankle joints of female rats were injected preventatively with an adenovirus vector containing human IL-13 (AxCAIL-13), a control vector with no insert (AxCANI), or phosphate buffered saline (PBS). Joints were harvested at the peak of arthritis, and histologic and biochemical features were evaluated.

RESULTS:

AxCAIL-13-treated joint homogenates had lower hemoglobin levels, suggesting reduced joint vascularity, and both endothelial cell migration and tube formation were significantly inhibited (P < 0.05). Similarly, AxCAIL-13 inhibited capillary sprouting in the rat aortic ring assay and vessel growth in the Matrigel plug in vivo assay. IL-13 gene delivery resulted in up-regulation and association of phosphorylated ERK-1/2 and protein kinase Calpha/betaII, suggesting a novel pathway in IL-13-mediated angiostasis. The angiostatic effect of AxCAIL-13 was associated with down-regulation of proangiogenic cytokines (IL-18, cytokine-induced neutrophil chemoattractant 1/CXCL1, lipopolysaccharide-induced CXC chemokine/CXCL5) and up-regulation of the angiogenesis inhibitor endostatin. The expression and activity of matrix metalloproteinases 2 and 9, which participate in angiogenesis, was impaired in response to IL-13 as compared with AxCANI and PBS treatment.

CONCLUSION:

Our findings support a role for IL-13 as an in vivo antiangiogenic factor and provide a rationale for its use in RA to control pathologic neovascularization.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Write to the Help Desk