Format

Send to

Choose Destination
See comment in PubMed Commons below
Diabetologia. 2007 Oct;50(10):2171-80. Epub 2007 Jul 28.

Liver X receptor antagonist reduces lipid formation and increases glucose metabolism in myotubes from lean, obese and type 2 diabetic individuals.

Author information

  • 1Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, Oslo, 0316, Norway.

Abstract

AIMS/HYPOTHESIS:

Liver X receptors (LXRs) play important roles in lipid and carbohydrate metabolism. The purpose of the present study was to evaluate effects of the endogenous LXR agonist 22-R-hydroxycholesterol (22-R-HC) and its stereoisomer 22-S-hydroxycholesterol (22-S-HC), in comparison with the synthetic agonist T0901317 on lipid and glucose metabolism in human skeletal muscle cells (myotubes).

METHODS:

Myotubes established from lean and obese control volunteers and from obese type 2 diabetic volunteers were treated with LXR ligands for 4 days. Lipid and glucose metabolisms were studied with labelled precursors, and gene expression was analysed using real-time PCR.

RESULTS:

Treatment with T0901317 increased lipogenesis (de novo lipid synthesis) and lipid accumulation in myotubes, this increase being more pronounced in myotubes from type 2 diabetic volunteers than from lean volunteers. Furthermore, 22-S-HC efficiently counteracted the T0901317-induced enhancement of lipid formation. Moreover, synthesis of diacylglycerol, cholesteryl ester and free cholesterol from acetate was reduced below baseline by 22-S-HC, whereas glucose uptake and oxidation were increased. Both 22-S-HC and 22-R-HC, in contrast to T0901317, decreased the expression of genes involved in cholesterol synthesis, whereas only 22-R-HC, like T0901317, increased the expression of the gene encoding the reverse cholesterol transporter ATP-binding cassette subfamily A1 (ABCA1).

CONCLUSIONS/INTERPRETATION:

T0901317-induced lipogenesis and lipid formation was more pronounced in myotubes from type 2 diabetic patients than from lean individuals. 22-S-HC counteracted these effects and reduced de novo lipogenesis below baseline, while glucose uptake and oxidation were increased.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk