Display Settings:

Format

Send to:

Choose Destination
Am J Physiol Heart Circ Physiol. 2007 Oct;293(4):H2210-8. Epub 2007 Jul 27.

CB2-receptor stimulation attenuates TNF-alpha-induced human endothelial cell activation, transendothelial migration of monocytes, and monocyte-endothelial adhesion.

Author information

  • 1Section on Oxidative Stress Tissue Injury, Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-9413, USA.

Abstract

Targeting cannabinoid-2 (CB(2)) receptors with selective agonists may represent a novel therapeutic avenue in various inflammatory diseases, but the mechanisms by which CB(2) activation exerts its anti-inflammatory effects and the cellular targets are elusive. Here, we investigated the effects of CB(2)-receptor activation on TNF-alpha-induced signal transduction in human coronary artery endothelial cells in vitro and on endotoxin-induced vascular inflammatory response in vivo. TNF-alpha induced NF-kappaB and RhoA activation and upregulation of adhesion molecules ICAM-1 and VCAM-1, increased expression of monocyte chemoattractant protein, enhanced transendothelial migration of monocytes, and augmented monocyte-endothelial adhesion. Remarkably, all of the above-mentioned effects of TNF-alpha were attenuated by CB(2) agonists. CB(2) agonists also decreased the TNF-alpha- and/or endotoxin-induced ICAM-1 and VCAM-1 expression in isolated aortas and the adhesion of monocytes to aortic vascular endothelium. CB(1) and CB(2) receptors were detectable in human coronary artery endothelial cells by Western blotting, RT-PCR, real-time PCR, and immunofluorescence staining. Because the above-mentioned TNF-alpha-induced phenotypic changes are critical in the initiation and progression of atherosclerosis and restenosis, our findings suggest that targeting CB(2) receptors on endothelial cells may offer a novel approach in the treatment of these pathologies.

PMID:
17660390
[PubMed - indexed for MEDLINE]
PMCID:
PMC2229632
Free PMC Article

Images from this publication.See all images (6)Free text

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms

Substances

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk