Format

Send to

Choose Destination
See comment in PubMed Commons below
Genome Biol. 2007;8(7):R142.

siRNA screen of the human signaling proteome identifies the PtdIns(3,4,5)P3-mTOR signaling pathway as a primary regulator of transferrin uptake.

Author information

  • 1Department of Chemical and Systems Biology and Bio-X Program, Stanford University School of Medicine, Stanford, CA 94305, USA. galvez@mpi-cbg.de

Abstract

BACKGROUND:

Iron uptake via endocytosis of iron-transferrin-transferrin receptor complexes is a rate-limiting step for cell growth, viability and proliferation in tumor cells as well as non-transformed cells such as activated lymphocytes. Signaling pathways that regulate transferrin uptake have not yet been identified.

RESULTS:

We surveyed the human signaling proteome for regulators that increase or decrease transferrin uptake by screening 1,804 dicer-generated signaling small interfering RNAs using automated quantitative imaging. In addition to known transport proteins, we identified 11 signaling proteins that included a striking signature set for the phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3)-target of rapamycin (mTOR) signaling pathway. We show that the PI3K-mTOR signaling pathway is a positive regulator of transferrin uptake that increases the number of transferrin receptors per endocytic vesicle without affecting endocytosis or recycling rates.

CONCLUSION:

Our study identifies the PtdIns(3,4,5)P3-mTOR signaling pathway as a new regulator of iron-transferrin uptake and serves as a proof-of-concept that targeted RNA interference screens of the signaling proteome provide a powerful and unbiased approach to discover or rank signaling pathways that regulate a particular cell function.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk